Relationship between CHA₂DS₂-VASc Score and Echocardiography Parameters with Ischemic Stroke Development

Kerem Can Yilmaz, Orcun Ciftci, Kaan Okyay, Serpil Eroglu, Bahar Pirat, Elif Sade, Melek Ulucam, Bulent Ozin, Haldun Muderrisoglu

Department of Cardiology, Baskent University School of Medicine, Ankara, Turkey

ORCID:

Kerem Can Yilmaz: http://orcid.org/0000-0003-3320-9508 Orcun Ciftci: https://orcid.org/0000-0001-8926-9142 Kaan Okyay: https://orcid.org/0000-0001-6134-8826 Serpil Eroglu: https://orcid.org/0000-0003-3055-7953 Bahar Pirat: https://orcid.org/0000-0003-4576-8630 Elif Sade: https://orcid.org/0000-0003-3737-8595 Melek Ulucam: https://orcid.org/0000-0002-4107-350 Bülent Ozin: https://orcid.org/0000-0003-3821-412X Haldun Muderrisoglu: https://orcid.org/0000-0002-9635-6313

Abstract

Context: Atrial fibrillation (AF) is the most common persistent rhythm disorder that has been shown to be associated with a significant increase in stroke risk. CHA_2DS_2 -VASc is a scoring system to identify the risk of thromboembolism in nonvalvular AF patients. **Aims:** The aim of our study was to investigate the relationship between the demographic properties, transthoracic and transesophageal echocardiography parameters, the patients' CHA_2DS_2 -VASc scores, and cerebrovascular events. **Subjects and Methods:** There were 48 patients with previous stroke and 217 patients without. We compared patients' demographic data, echocardiographic parameters, presence of patent foramen ovale (PFO) in transesophageal echocardiography, medications, AF categories, and CHA_2DS_2 -VASc scores. **Results:** The mean age of the stroke group was 63.2 ± 12.8 years (P = 0.417). The CHA_2DS_2 -VASc score was 3.25 ± 2.06 in the stroke group and 2.49 ± 1.54 in the nonstroke group (P < 0.001). As for the presence of PFO, it was present in 45.8% of patients who had a stroke, but only 17.9% in the nonstroke group (P < 0.001). **Conclusions:** CHA2DS2-VASc score increases the risk of stroke in a broader sense, but not only in patients with AF. It is reasonable to think that the higher the score, the higher the risk of stroke. Furthermore, the presence of PFO in a patient is a facilitating factor for stroke, which may be considered for closure in the case of recurrent stroke episodes.

Keywords: Anticoagulants, atrial fibrillation, stroke, thrombus

INTRODUCTION

Atrial fibrillation (AF) is the most common persistent rhythm disorder that has been shown to be associated with a significant increase in stroke risk.^[1] Left atrial appendage (LAA) thrombi are responsible for most strokes of cardiac origin.^[2] CHA₂DS₂-VASc is a scoring system to identify the risk of thromboembolism and thus the indications for anticoagulation in nonvalvular AF

Received: 17-04-2020 Revised: 25-05-2020 Accepted: 24-06-2020 Published Online: 28-09-2020

Access this article online		
Quick Response Code:	Website: http://www.ijcva.com	
	DOI: 10.4103/IJCA.IJCA_19_20	

patients. CHA_2DS_2 -VASc score ranges from 0 to 9 points, where congestive heart failure or left ventricular ejection fraction (EF) ≤ 0.40 , hypertension, age 65–74 years, diabetes mellitus, vascular disease, and female sex are each assigned 1 point; age ≥ 75 years,

Address for correspondence: Dr. Kerem Can Yilmaz, Department of Cardiology, Baskent University School of Medicine, Ankara, Turkey. E-mail: keremcny@hotmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Yilmaz KC, Ciftei O, Okyay K, Eroglu S, Pirat B, Sade E, *et al.* Relationship between CHA₂DS₂-VASc score and echocardiography parameters with ischemic stroke development. Int J Cardiovasc Acad 2020;6:124-8.

prior stroke, transient ischemic attack, and thromboembolism are each assigned 2 points.^[3] Anticoagulation is recommended in patients with a CHA₂DS₂-VASc score of 2 and above.^[4] In addition, patent foramen ovale (PFO) is detected in some patients with cryptogenic stroke. PFO prevalence is 6 times greater in cryptogenic stroke under the age of 55 than other causes of stroke.^[5] PFO is a defect located at the interatrial septum that provides right-to-left shunt in fetal circulation and persists after birth in 27% of the general population.^[6] Paradoxical embolism through a PFO generally originates from deep vein thrombosis, although air, amniotic fluid, and fat embolism may rarely cause a stroke by right-to-left shunting, especially during a Valsalva maneuver.^[7]

The aim of our study was to investigate the relationship between the demographic properties, the presence of left atrial thrombus, and the presence of PFO in patients undergoing transesophageal echocardiography (TEE); we also aimed to examine the relationship between the patients' CHA₂DS₂-VASc scores and cerebrovascular events.

SUBJECTS AND METHODS

This study enrolled a total of 265 patients who were admitted to our adult cardiology outpatient clinic and who underwent TEE procedure for any indication between June 2017 and June 2019. Patient's demographic data, transthoracic and transesophageal echocardiographic examinations, and laboratory test results were recorded retrospectively. Patients with missing medical data, cancer with ongoing treatment, hematological thrombotic disorders, and catheter thrombus surveilled by successive TEE examinations were excluded.

The patients were divided into two groups according to their previous stroke. There were 48 patients with previous stroke specified as Group I and 217 patients without stroke specified as Group II. We compared patient's demographic data, echocardiographic parameters, presence of PFO in TEE, medications, AF categories, and CHA₂DS₂-VASc scores.

AF was categorized on the basis of patient history and ESC AF Guidelines.^[8] Accordingly, paroxysmal AF was defined by symptoms lasting up to 7 days, persistent AF between 7 days and 1 year, long-standing persistent AF more than 1 year, and permanent AF for an undetermined period of time. Newly diagnosed AF was diagnosed by a new onset of symptoms and the absence of any previous history of AF.

For all patients, hemoglobin, hematocrit, white blood cell count, platelet count, creatinine, high-density lipoprotein, triglyceride, and low-density lipoprotein levels were recorded. Study protocols approved by the local ethics committee were utilized throughout the study. A standardized questionnaire was used to collect clinical and demographic information, including medication history.

Statistical analyses

Laboratory data and echocardiographic variables were compared between the two groups using Kruskal-Wallis test, with paired Mann–Whitney U-test being performed as the *post hoc* analysis to identify significantly different pairs. Categorical data were analyzed with the Fisher's exact test and Chi-squared test. Normally distributed continuous variables were expressed as the mean \pm standard deviation; nonnormally distributed continuous variables were expressed as median (minimum–maximum); and categorical variables were presented as percentage (%). Backward stepwise logistic regression analysis method was used for multivariate analysis. P < 0.05 was considered statistically significant. All analyses were performed using the SPSS statistical software package (version 25; SPPS, Chicago, IL, USA).

RESULTS

The mean age of the Group I was 64.8 ± 12.3 years; the mean age of the Group II was 63.2 ± 12.8 years (P = 0.417). The percentage of men was 64.5% in Group I and 62.2% in Group II (P = 0.869) [Table 1]. The rate of AF was much higher in Group II because the most common indication for TEE was for thrombus evaluation for AF rhythm control. Thus, AF was present in 35.4% of patients with a history of stroke and 78.8% of patients without (P < 0.001). As for the presence of PFO, it was present in 45.8% of patients who had a stroke, but only 17.9% in the nonstroke group (P < 0.001). Thrombus was detected by TEE in 5 (10.4%) patients

Table 1: Demographic characteristics and drug usage of	
patients	

Group I (<i>n</i> = 48)	Group II (<i>n</i> =217)	Р
31 (64.5)	135 (62.2)	0.869
64.8±12.3	63.2±12.8	0.417
31 (64.5)	132 (60.8)	0.743
14 (29.1)	45 (20.7)	0.249
21 (43.7)	61 (28.1)	0.039
15 (31.2)	55 (25.3)	0.469
10 (20.8)	33 (15.2)	0.385
17 (35.4)	171 (78.8)	< 0.001
22 (45.8)	39 (17.9)	< 0.001
4 (8.3)	14 (6.4)	0.432
12 (25.0)	58 (26.7)	0.859
6 (12.5)	83 (38.2)	0.001
3 (6.2)	14 (6.4)	0.629
1 82.0)	11 (5.0)	0.700
5 (10.4)	34 (15.6)	0.500
30 (62.5)	77 (35.4)	0.006
14 (29.1)	100 (46.0)	0.037
23 (47.9)	112 (51.6)	0.750
23 (47.9)	153 (70.5)	0.004
14 (29.1)	49 (22.5)	0.351
14 (29.1)	51 (23.5)	0.459
3 (6.2)	39 (17.9)	0.049
	(n = 48) 31 (64.5) 64.8±12.3 31 (64.5) 14 (29.1) 21 (43.7) 15 (31.2) 10 (20.8) 17 (35.4) 22 (45.8) 4 (8.3) 12 (25.0) 6 (12.5) 3 (6.2) 1 82.0) 5 (10.4) 30 (62.5) 14 (29.1) 23 (47.9) 14 (29.1) 14 (29.1) 14 (29.1)	(n=48) (n=217) 31 (64.5) 135 (62.2) 64.8±12.3 63.2±12.8 31 (64.5) 132 (60.8) 14 (29.1) 45 (20.7) 21 (43.7) 61 (28.1) 15 (31.2) 55 (25.3) 10 (20.8) 33 (15.2) 17 (35.4) 171 (78.8) 22 (45.8) 39 (17.9) 4 (8.3) 14 (6.4) 12 (25.0) 58 (26.7) 6 (12.5) 83 (38.2) 3 (6.2) 14 (6.4) 1 82.0) 11 (5.0) 5 (10.4) 34 (15.6) 30 (62.5) 77 (35.4) 14 (29.1) 100 (46.0) 23 (47.9) 112 (51.6) 23 (47.9) 153 (70.5) 14 (29.1) 49 (22.5) 14 (29.1) 51 (23.5)

CAD: Coronary artery disease, PFO: Patent foramen ovale,

TEE: Transeosephageal echocardiography, TTE: Transthoracic echocardiography, AF: Atrial fibrillation

in Group I (n = 48) and 34 patients (15.6%) in Group II (n = 217) (P = 0.500).

An analysis of AF types in Group I showed that paroxysmal AF was present in eight patients, persistent AF in four patients, and chronic AF in five patients [Table 2].

Considering other echo parameters, left ventricular EF was significantly higher in the stroke group (56.9 \pm 9.19 vs. 51.9 \pm 10.87; *P* = 0.002). Regarding the end-diastolic volume, left atrial, and right atrial diameter, there was no significant difference between the two groups (*P* = 0.059, 0.081, and 0.061, respectively) [Table 3].

The CHA₂DS₂-VASc score was 3.25 ± 2.06 in Group I and 2.49 ± 1.54 in Group II (P < 0.001).

Beta-blocker use was found to be higher in Group II since the number of patients with AF was correspondingly high. Similarly, oral anticoagulant and antiaggregant use was also significantly higher in Group II. A total of 17 patients were using oral anticoagulants in Group I. Three of them received oral anticoagulation with acetyl salicylic acid combination.

Table 2: Atrial fibrillation classification of patients			
AF classification	Group I (<i>n</i> =48)	Group II (<i>n</i> =217)	
Paroxysmal AF	8	65	
Persistent AF	4	74	
Long-standing persistent AF	-	5	
Chronic AF	5	29	
AF: Atrial fibrillation			

Table 3: Comparison of	CHA2D2S	VASc scores,
echocardiographic, and	laboratory	parameters of patients

Parameters	Group I (<i>n</i> =48)	Group II (<i>n</i> =217)	Р
CHA2DS2-VASc	3.25±2.06	2.49±1.54	0.004
Ejection fraction (%)	56.9±9.19	$51.9{\pm}10.87$	0.002
End-diastolic volume (ml)	94.2±20.5	104.4 ± 35.8	0.059
Left atrium diameter (mm)	42.8±12.5	44.9±6.2	0.081
Right atrium diameter (mm)	38.1±4.2	40.7 ± 5.0	0.061
Pulmonary artery pressure in TTE (mmHg)	37.6±7.6	39.4±10.8	0.458
Left ventricular hypertrophy in TTE	32 (66.6)	155 (71.4)	0.162
Diastolic dysfunction, TTE	24 (50.0)	65 (29.9)	0.086
Mitral insufficiency, TTE	32 (66.6)	160 (73.7)	0.005
Tricuspid insufficiency, TTE	21 (43.7)	157 (72.3)	0.001
Creatinine (mg/dl)	0.99 ± 0.53	1.18 ± 0.96	0.181
Hemoglobine (g/dl)	13.4±1.99	13.5 ± 1.9	0.897
Hemotocrite (%)	40.3±23.5	41.5±25.6	0.457
White blood cell $(10^3 \times \mu l)$	8.4 ± 2.8	7.8 ± 5.7	0.483
Platelets $(10^3 \times \mu l)$	224±68	227±167	0.893
LDL (mg/dl)	117.0 ± 35.0	115.3 ± 30.3	0.810
HDL (mg/dl)	41.6±9.2	42.4±11.5	0.654
Triglycerides (mg/dl)	133.5±47.3	128.4±65.7	0.612

LDL: Low-density lipoprotein, HDL: High-density lipoprotein,

TTE: Transthoracic echocardiography

Six patients did not receive any treatment. Of the five patients with thrombus, two were using warfarin; two were using acetyl salicylic acid and clopidogrel; and a patient was using acetyl salicylic acid alone [Table 4].

Figure 1 shows a receiver operating characteristic (ROC) curve for CHA_2DS_2 -VASc score. According to it, an international normalized ratio (INR) level above 3.5 has a sensitivity of 42% and a specificity of 73% for stroke prediction.

A univariate regression analysis showed that PFO, CHA₂DS₂-VASc category, pulmonary artery pressure, tricuspid insufficiency, diastolic dysfunction, and EF category were significant univariate predictors of stroke. INR level of 3.5 found in the ROC analysis was taken as the cutoff level. EF category was based on the normal EF level of 55%. A multiple regression analysis for the risk factors revealed that PFO, CHA2DS2-VASc category emerged as significant independent predictors of cerebrovascular event [Table 5]. Accordingly, having a PFO increased the cerebrovascular event risk by 4.02 times (95% confidence interval [CI], 1.99–8.11), while a CHA₂DS₂-VASc score above 3.5 increased the same risk by 3.52 times (95% CI, 1.64–7.57).

DISCUSSION

In a study investigating the risk of stroke based on the CHA_2DS_2 -VASc score, which determines the risk of stroke in AF, Olesen *et al.*^[9] found a 1-year stroke risk of 0.84 for a CHA_2DS_2 -VASc score of 0 point; 1.79 for 1 point; 3.67 for 2 points; 5.75 for 3 points; and 8.18% for 4 points. Therefore, 2016 European Society of Cardiology AF guideline^[8] assigned a Class I indication for long-term anticoagulation when the CHA_2DS_2 -VASc score is equal to or >2 for men and equal to or >3 for women, and a Class IIa recommendation for a CHA_2DS_2 -VASc score of 1 for men and 2 for women. The type of AF is currently not taken into consideration for initiating long-term anticoagulation.

In a study by Paciaroni *et al.*,^[10] where 713 patients were compared with 700 controls, patients with CHA₂DS₂-VASc

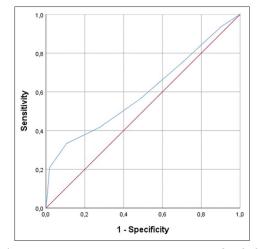


Figure 1: Receiver operating characteristic curve of CHA2DS2-VASc score Area under curve 0.598 (95% Confidence Interval 0.500-0.696)

Table 4: Anticoagulant and antiaggregant usage of stroke patients

	Group I (<i>n</i> =48)
Only ASA	14
ASA + varfarin	3
ASA + clopidogrel	6
Only clopidogrel	5
OACwarfarin	8
OAC apixaban	3
OAC rivaroxaban	2
OACedoxaban	1
No treatment	6

ASA: Acetyl salicylic acid, OAC: Oral anticoagulant

Parameter	Exp (<i>B</i>)	95% CI for Exp (B)
Patent foramen ovale	4.02	1.99-8.14
CHA2DS2-VASc category	3.52	1.64-7.57
GT G 01 1		

CI: Confidence interval

score \geq 4 were shown to be significantly higher in the patient group (85.1% vs. 45.4%; *P* = 0.0001). However, that study did not specify average scores. In a multivariate analysis, the CHA₂DS₂-VASc score was found to be 1.72 (1.58–1.88).

In a study comparing the CHA₂DS2-VASc scoring system and other scoring systems,^[11] the most useful score for determining the risk of stroke was the CHA₂DS₂-VASc score, with a score of 2 and above increasing the risk. Accordingly, 2.2% (5/227) of the patient population had a score of 1 (P = 0.27), whereas a score of 2 or above was associated with a thromboembolism rate of 14.67% (333/2300) (P = 0.0005). In our study, the mean CHA₂DS₂-VASc score of both groups was above 2, but was found to be 3.25 ± 2.06 in patients with stroke. Studies similar to our study generally recruited patients with AF. However, some authors have advocated that the components of the CHA₂DS₂-VASc score are some general thromboembolism risk factors, which are not specific to AF. For this reason, it is considered that patients without AF but higher CHA₂DS₂-VASc scores have a higher stroke risk than those with lower CHA₂DS₂-VASc scores. Our study data also support this notion. Thus, if a patient has a high CHA₂DS₂-VASc score but no AF, he or she may return with cerebrovascular events even within a short period of time. In addition, another study, where coagulation factors related to LAA thrombus were studied,^[12] 32 patients with a history of LAA thrombus were compared with 32 controls. Recurrent thromboembolic events were observed in ten patients in the LAA thrombus group and seven patients in the control group. These events were shown to be associated with high thrombin generation, fibrinogen, plasminogen activator inhibitor-1, and soluble CD40 ligand. Since our study is a retrospective study, coagulation factors could not be investigated, but it should be kept in mind that these factors should be screened in patients who do not have any history of AF but have sustained a thrombotic event. In a study^[13] investigated the presence of left atrial thrombus in patients with previous stroke, and found a rate of 5.5% in patients with sinus rhythm. In our study, the rate of thrombus was 10.4% (5/48) in the stroke group. Of these, two patients did not have a history of AF, while the remainder patients had AF. All of five patients were receiving an anticoagulant or antiplatelet.

Our study also detected a significantly higher rate of PFO in the stroke group. PFO is a defect at the interatrial septum, which has been linked with cryptogenic stroke. The presumed mechanism of cryptogenic stroke caused by a PFO is the migration of thrombus from the venous side of the circulation to the left atrium with subsequent systemic embolism, a condition called paradoxical embolization. Provocative maneuvers and preexisting cardiopulmonary disease can cause elevation in right atrial pressures, leading to right-to-left shunting through a PFO. If a patient has cryptogenic stroke and no other risk factor for stroke, the patient should be evaluated for PFO closure. Ozdemir et al.^[14] examined the association of obstructive sleep apnea and PFO in two patients with stroke. Increased blood viscosity and platelet aggregation in patients with obstructive sleep apnea were implicated as predisposing conditions for clot formation. In a large patient-based meta-analysis, PFO closure and antiplatelet therapy were shown to provide a significant reduction in ischemic stroke, especially among patients under 60 years of age.^[14] In another study by Saver et al.,^[15] PFO closure in adults with a history of cryptogenic stroke was shown to significantly reduce ischemic stroke compared to medical treatment. These data explain the emergence of PFO as one of the important causes of stroke in our study.

CONCLUSIONS

The CHA_2DS_2 -VASc score increases the risk of stroke in a broader sense, but not only in patients with AF. It is reasonable to think that the higher the score, the higher the risk of stroke. Furthermore, the presence of PFO in a patient is a facilitating factor for stroke, which may be considered for closure in the case of recurrent stroke episodes.

Study limitations

Our study was a retrospective study, so we had not any data about advanced echocardiographic parameters such as left atrial appendage strain rate. We had less patients with stroke and we did not perform Holter monitoring to exclude paroxysmal AF. We evaluate patients with patient history and clinic electrocardiogram.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

 Ferro JM. Cardioembolic stroke: An update. Lancet Neurol 2003;2:177-88.

127

- Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: Structure, function, and role in thromboembolism. Heart 1999;82:547-54.
- Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest 2010;137:263-72.
- Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-Vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J 2018;39:1330-93.
- Overell JR, Bone I, Lees KR. Interatrial septal abnormalities and stroke: A meta-analysis of case-control studies. Neurology 2000;55:1172-9.
- Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: An autopsy study of 965 normal hearts. Mayo Clin Proc 1984;59:17-20.
- Spencer MP, Moehring MA, Jesurum J, Gray WA, Olsen JV, Reisman M. PowerM-mode transcranial Doppler for diagnosis of patent foramen ovale and assessing transcathether closure. J Neuroimaging 2004;14:342-9.
- Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. ESC Scientific Document Group. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016;37:2893-962.

- Olesen JB, Torp-Pedersen C, Hansen ML, Lip GY. The value of the CHA2DS2-VASc score for refining stroke risk stratification in patients with atrial fibrillation with a CHADS2 score 0-1: A nationwide cohort study. Thromb Haemost 2012;107:1172-9.
- Paciaroni M, Agnelli G, Caso V, Silvestrelli G, Seiffge DJ, Engelter S, et al. Causes and risk factors of cerebral ischemic events in patients with atrial fibrillation treated with non-Vitamin K antagonist oral anticoagulants for stroke prevention. Stroke 2019;50:2168-74.
- 11. Aakre CA, McLeod CJ, Cha SS, Tsang TS, Lip GY, Gersh BJ. Comparison of clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation. Stroke 2014;45:426-31.
- Meus R, Son M, Sobczyk D, Undas A. Prothrombotic State in Patients with a left atrial appendage thrombus of unknown origin and cerebrovascular events. Stroke, 2016;47:1872-8.
- Yahia AM, Shaukat A, Kirmani JF, Latorre JG, Qureshi Al. Prevalence and prediction of left atrial thrombus in patients with a recent cerebral ishchemic event, who are in sinus rhythm: A single center experience. J NeuroImaging 2009;19:323-5.
- Ozdemir O, Beletsky V, Hachinski V, Spence JD. Cerebrovascular events on awakening, patent foramen ovale and obstructive sleep apnea syndrome. J Neurol Sci 2008;268:193-4.
- Saver JL, Carroll JD, Thaler DE, Swalling RW, MacDonald LA, Marks DS, *et al.* Long-term outcomes of patent foramen ovale closure or medical therapy after stroke. N Engl J Med 2017;337:1022-32.